Vai al contenuto


Diamoci una rifasata! (guida alla conoscenza delle fasature)


Alext5
 Share

Recommended Posts

Con questa guida andremo a conoscere cosa sono e come si misurano le fasature di un motore a scoppio a due tempi ma con particolare riferimento alla nostra cara vespa.

 

Nella prima parte vedremo con cosa si misurano e la ricerca dei punti morti, nella seconda come si misurano praticamente, nella terza come influenzano il rendimento del motore ed in una quarta parte parleremo di come, quanto e dove modificarle. Le parti saranno postate in tempi diversi per non mettere troppa carne al fuoco e per darvi il tempo di fare magari qualche misura o di attrezzarvi per farlo.

 

Chi avesse dubbi o domande o suggerimenti si faccia avanti ma senza correre e chiedere già quanto deve modificare la propria fasatura, procederemo insieme ed arriveremo alla risposta insieme.

 

Buona lettura

Link al commento
Condividi su altri siti

Prima parte.

 

Una premessa fondamentale: le fasature si esprimono e misurano solo in gradi non esiste misurare lo scarico, l’aspirazione o altro pertinente alle fasature in millimetri, a dita e altro diverso dai gradi. La Polini ad esempio (ma anche altri), indica sui propri manuali di installazione i millimetri di albero da tagliare per aumentare la fasatura di ammissione, non è la cosa più giusta ma per semplicità di comprensione fanno così. Sarebbe sicuramente più giusto indicare la fasatura in gradi che considerano ideale per i loro kit ma dato che non si parla di motori particolarmente spinti, un errore di qualche grado fa parte delle generose tolleranze delle nostre vespette. Se prendiamo 10 alberi, li tagliamo tutti alla stessa maniera (a millimetri come dice ad esempio Polini) e li montiamo su 10 carter, andando poi a misurare la fasatura in gradi troveremmo 10 valori diversi. Questo perché per combinazioni di tolleranze che nella vespa sono tenute abbastanza “comode” e fra motori teoricamente identici ci saranno sicuramente alcuni gradi di differenza che fanno andare un motore leggermente meglio di un altro.

 

Per misurare le fasi nel modo giusto serve uno strumento apposito, un goniometro da 360 gradi o disco graduato. Ci sono diversi modi per realizzarlo/reperirlo:

 

- in cartoleria comprando uno di quelli di plastica da disegno e praticando al centro un foro da 10 mm;

- in una utensileria prendendone uno di quelli professionali;

- in casa stampandone uno preso dal web e incollandolo con del biadesivo (se usate colla liquida la stampa va a farsi benedire) su un foglio di plasica/lexan/cartoncino etc.

 

Consiglio: maggiore è il diametro del disco, più facile sarà la lettura, migliore sarà la precisione.

 

A seconda dei casi (motore montato/smontato, con/senza volano, motore small/large) il disco può essere posizionato e fissato in vari modi. Se il motore è senza volano si può inserire sulla filettatura e bloccare con il dado del volano dopo aver messo dietro una rondella o un altro dado. Con il volano montato invece può essere tenuto con una calamita tonda sul mozzo del volano stesso, mentre solo per le large, alcuni di quelli per uso scolastico hanno un diametro tale che possono essere fissati dal lato frizione e calzano bene all’interno del carter. Anche qui andremo a bloccarlo con il dado della frizione, sempre contro una rondella o un altro dado.

 

Vi consiglio di farlo sempre dal lato volano e di usare un disco bello grande almeno quanto il volano. In entrambi i casi, comunque il disco non deve essere bloccato prima di aver stabilito lo “0” ovvero Il punto morto superiore, d’ora in avanti “pms”

 

Cosa è il punto morto superiore? E il punto in cui la corsa verso l’alto del pistone raggiunge il suo massimo, è il punto in cui l'asse di rotazione di albero, piede e testa di biella sono sulla stessa linea ed è anche il punto di riferimento della fasatura di ammissione oltre che dell’accensione. Fondamentalmente è il punto di partenza del ciclo di funzionamento. Il punto morto inferiore ovviamente è l’esatto opposto e rispetto al pms dista 180 gradi. Ovviamente l’intero ciclo dura 360 gradi, sempre e indipendentemente da tutto.

 

Dopo aver posizionato il disco dobbiamo creare l’ago che sarà poi l’indicatore del nostro disco graduato. Possiamo crearlo con del filo di ferro di lunghezza variabile a seconda della grandezza del disco, da fissare arrotolandolo e stringendolo ad esempio ad una vite del coprivolano che deve essere tolto come la testata ed il carburatore (nelle small bisogna togliere anche il collettore di aspirazione) Il passo successivo è trovare il pms e per fare questo vi indico due diversi sistemi: uno più preciso utilizzando un comparatore, l’altro abbastanza approssimativo (certo non dobbiamo preparare un motore da GP ma è sempre meglio essere precisi).

 

Se avete il comparatore posizionatelo in modo che il pistone in prossimità del pms vada ad impegnare il cursore e ruotanto leggermente l'albero in avanti e indietro stabilite il punto di massima altezza indicato sul quadrante del comparatore.

 

Se non avete un comparatore si può trovare il punto morto inferiore (d’ora in poi “pmi”) spingendo in basso il pistone e tenendo pressato si ruota leggermente da un lato e dall’altro l’albero fino a trovare appunto il pmi ovvero la posizione dell'albero che non risente della pressione che stiamo esercitando sul pistone.

 

Trovato il pms il disco va posizionato con l’ago sullo “0” mentre se avete trovato il pmi il disco va posizionato con l’ago su “180”. Per una migliore lettura potete assottigliare battendolo all’estremità il filo di ferro. A questo punto potete bloccare il disco sull’albero avendo cura che non cambi posizione. Fate fare qualche giro all’albero e ricontrollate lo “0” o il "180"

 

Durante le misurazioni il cilindro non deve essere libero ma fissato al carter e con la sua guarnizione. Nelle small corsa corta solitamente il cilindro ha un fissaggio sul carter separato dalla testa, nelle large e nelle small a corsa lunga è opportuno, utilizzando delle boccole o bussole accoppiate a rondelle, fissare con almeno due dadi il cilindro ai prigionieri. Per una misurazione assolutamente precisa il cilindro deve essere serrato con tutti i dadi alla coppia di serraggio prevista perchè la guarnizione anche se in misura lieve viene pressata dal cilindro che di conseguenza si abbassa. E' importante specie quando la guarnizione è nuova o si aggiungono spessori alla base del cilindro, dopo il serraggio avranno certamente una quota inferiore.

 

Di seguito una foto esempio. Per chi non mi ha mai visto dal vivo quel brutto ceffo che si vede all'opera sono io.

 

36628IMG_0116.jpg

 

 

96207Goniometro.jpg

Link al commento
Condividi su altri siti

seconda parte.

Ora andremo a misurare le fasi del nostro motore: aspirazione, travaso e scarico.

 

Travaso e scarico sono sempre simmetriche in quanto rispetto al punto morto inferiore la durata è divisa equamente in due parti, prima e dopo il pmi. La fasatura di aspirazione invece può essere simmetrica se controllata dal pistone (come sulla vespa GS 150-160 e 180SS) o asimmetrica se controllata dalla valvola rotante ovvero la spalla dell’albero motore che girando apre e chiude l’ammissione del carter. E’ asimmetrica perché la parte di fasatura prima del punto morto superiore è di durata diversa dalla parte dopo il PMS. Nei motori lamellari invece la fasatura di aspirazione varia in funzione di diversi fattori, di fatto è un sistema di ammissione a fasatura variabile. In questa guida parleremo solo di motori con ammissione a valvola rotante.

 

Per prima cosa, prima di capire se e come o semplicemente perché modificare le fasi è opportuno misurare le proprie. Comincieremo dall’ammissione, poi lo scarico e il travaso.

 

Dopo aver posizionato il disco graduato e posizionato lo “0” ruotiamo l’albero in senso orario e osservando la luce di ammissione (che a pms sarà aperta) fermiamo l’albero nel punto in cui la spalla dell’albero completa la chiusura della luce. Il disco indicherà ad esempio 50: segnamo questo valore. Continuiamo a ruotare l’albero, la luce ad un certo punto inizia ad aprirsi, fermiamo l’albero e segnamo il valore indicato dal disco, ad esempio 240: segnamo anche questo valore.

 

A questo punto possiamo ripetere la misura per verifica e dopo aver avuto conferma dei valori misurati possiamo stabilire che la nostra fasatura di ammissione è 120/50 ovvero si è aperta 120 gradi prima del pms (360-240=120) e si è chiusa 50 gradi dopo.

 

Passiamo ora allo scarico con lo stesso metodo, facciamo girare l’albero e segnamo il punto in cui la luce di scarico inizia ad aprire, ad esempio 100 e segnamo questo dato. Continuando nella rotazione dell’albero, il pistone risalendo chiuderà la luce di scarico e quando questa sarà completamente chiusa fermiamo l’albero e segnamo il valore indicato dal disco, ad esempio 260: segnamo.

 

La nostra fasatura di scarico è 160 gradi (260-100) ed essendo come detto simmetrica, questo significa che la luce di scarico si apre 80 gradi prima del pmi e si chiude 80 gradi dopo il pmi.

 

Allo stesso modo misuriamo la fase di travaso, ad esempio da 120 a 240 ovvero 120 gradi di travaso, anche questa fasatura è simmetrica quindi le luci di travaso si aprono 60 gradi prima del pmi e si chiudono 60 gradi dopo.

 

Le fasature di travaso e scarico, per comodità e perché non può essere diversamente vengono indicate sempre con un unico valore, per l’ammissione ne vengono dati due.

 

Dopo aver fatto la prima misurazione, se dobbiamo variare qualcosa, una delle prime cose da verificare è se il pistone a pmi scopre perfettamente le luci, la risposta quasi sempre è no. Questa è una delle prime problematiche da correggere in quanto la luce parzialmente coperta dal pistone di fatto è ridotta ed inoltre lo scalino/salto che si forma crea turbolenze che riducono ulteriormente la sezione della luce. Per porre rimedio basta semplicemente spessorare il cilindro fino ad avere il pistone che a pmi è perfettamente in linea con il bordo inferiore delle luci.

 

Dopo aver adeguato l'altezza del cilindro andate nuovamente a misurare le fasi di travaso e scarico e noterete che “magicamente” sono aumentate, pochi decimi di mm si trasformano in gradi interi. Questo è il punto di partenza per poi valutare se e quanto aumentare le fasi.

 

Ovviamente dopo aver adeguato lo spessore sotto al cilindro bisognerà togliere pari spessore dalla testa. In alcuni motori questo scalino arriva al millimetro e più e già con questo piccolo affinamento insieme ad opportune modifiche alla testa, il motore guadagnerà coppia, potenza, allungo, guidabilità.

 

Provare per credere!

Link al commento
Condividi su altri siti

Terza parte.

 

Vediamo una per una le fasi nel funzionamento del motore partendo dall’aspirazione.

Aspirazione o ammissione

 

La fasatura di aspirazione determina quanta “carica” (la miscela aria-benzina) deve entrare nel motore ma non solo, le distanze dell’apertura e della chiusura rispetto al pms e all’apertura di travasi e scarico influiscono molto sull’erogazione del motore.

 

Un esempio banale. Immaginiamo il motore spento con il pistone a pmi e spingiamo sulla pedivella: il pistone partendo dal pmi, inizia a salire e appena chiude i travasi e la valvola di aspirazione si apre (immaginiamo in questa fase il pistone come lo stantuffo di una siringa che sta aspirando da una fialetta), si crea nel carter pompa ovvero dove gira l’albero una depressione, aspirando attraverso il carburatore la miscela aria-benzina. Continuando nella rotazione dell’albero ad un certo punto l’ammissione si chiude, il pistone ha già iniziato la sua discesa e appena le luci di travaso si riaprono, la miscela a/b presente nel carter viene pressata e travasata (ecco perché si chiamano travasi) dal carter pompa all’interno del cilindro. Continuando a girare ancora il pistone sale comprimendo quanto aspirato e contemporaneamente salendo ricrea depressione nel carter aspirando altra carica, di sopra invece quando il pistone è a pms ha compresso la miscela aria-benzina, è scoccata la scintilla, avviene lo scoppio-espansione, il pistone viene spinto giù, entra dai travasi nuova carica, i gas combusti vengono espulsi, il pistone risale, comprime, scoppia e così via.

 

Togliete il piede dalla pedivella, il motore ora è in moto.:risata:

 

Stabilito come si sviluppa la fase di aspirazione nel motore vediamo cosa implicano i punti di apertura e chiusura.

 

Quando si deve aprire l’aspirazione? In teoria da quando il pistone salendo ha chiuso i travasi quindi la nostra “siringa” è nella condizione migliore per aspirarsi dentro la carica. In pratica invece tardando un po l’apertura rispetto alla chiusura dei travasi, prima che si apre l’aspirazione all’interno del carter si crea già depressione e all’apertura della valvola inizierà l’aspirazione in maniera più vigorosa, a tutto vantaggio del rendimento ai bassi e medi regimi. Viceversa anticipando l’apertura a prima che i travasi siano chiusi avremo il cosidetto incrocio ovvero il momento in cui aspirazione travaso e scarico si incrociano nelle loro fasi con vantaggi solo agli alti regimi.

 

Quando si deve chiudere la valvola? In teoria non appena il pistone ha terminato la sua corsa verso l’alto perchè se il pistone inizia a scendere e la valvola è ancora aperta, irrimediabilmente parte della carica aspirata sarà risputata fuori (il famoso rifiuto). In pratica però il ritardo nella chiusura dell’aspirazione è uno di quei parametri che influisce tantissimo sulla potenza del motore agli alti regimi. Con l’aumentare dei giri, è proprio in questa fase che entra la carica in più, quella che teoricamente scapparebbe via resta invece all’interno del carter che si traduce poi all’apertura dei travasi in getti di miscela molto corposi. Fra l’altro quello che tutti chiamano “albero anticipato” spesso rispetto ad un albero originale è più ritardato che anticipato.

 

Quanto sopra già vi fa capire la differenza fra fasature di aspirazione strette e larghe rispetto al rendimento del motore ai bassi o agli alti.

 

Fasature di aspirazione ampie agli alti regimi fanno entrare grandi quantità di carica ma ai bassi regimi ne resta poca nel carter e i getti di miscela dall’ammissione e dai travasi sono fiacchi perché quando si chiude l’aspirazione parecchia carica è scappata via, all’interrno del carter pompa c’è poca roba e poca pressione. Aggiungiamo poi carburazione difficile ai bassi, motore che si sporca a minimo, poca guidabilità, alti consumi e scarsa fruibilità del motore nei percorsi lenti.

 

Specularmente fasature di aspirazione strette danno origine a flussi di aspirazione e travaso vigorosi ma di breve durata che ripuliscono bene e subito il cilindro dai gas combusti con ottimi risultati in termini di resa ai bassi e medi regimi ma pochissima propensione a portarsi ad alti regimi.

 

 

 

La fase di travaso

 

E’ la fase in cui la miscela aspirata dal pistone in risalita (la nostra siringa) viene poi pompata e travasata nel cilindro durante la discesa del pistone stesso. Quando si aprono i travasi lo scarico è già aperto, buona parte dei gas combusti sono andati già via i gas freschi entrano nel cilindro e quello che resta dei gas combusti viene cacciato via (si spera) dall’arrivo dei gas freschi. La perfetta pulizia del cilindro dai gas combusti è la condizione base per un buon riempimento con i gas freschi. L’altezza dei travasi determina appunto la fasatura di travaso mentre il numero e la larghezza aumenta principalmente la portata. La loro angolazione e distribuzione è studiata in modo da riempire il più possibile di carica il cilindro accompagnando “alla porta” i gas combusti. In realtà a questa fase di pulizia contribuisce in maniera significativa lo scarico a espansione.

 

La fasatura di travaso è una fase simmetrica rispetto al pmi quindi se l’aumentiamo immancabilmente inizia prima come finisce dopo in maniera simmetrica.

 

Perché alzare la fasatura di travaso? Perché i travasi (come lo scarico) sono finestre che vengono aperte e richiuse dal movimento del pistone, Se consideriamo il tempo della loro apertura è facile capire che questo è influenzato dal numero dei giri ovvero a bassi regimi resteranno aperti sicuramente di più che agli alti. Ma con l’aumentare dei giri abbiamo bisogno necessariamente di più carica e se il tempo di apertura dei travasi non è adeguato non potremo far arrivare nel cilindro la carica necessaria per aumentare la potenza ed i giri.

 

 

 

La fase di scarico

 

La fasatura di scarico è la fase in cui il cilindro sputa fuori i gas combusti per lasciar posto alla carica di gas freschi ovvero la miscela aria-benzina. Immaginiamo anche qui il nostro motore spento e abassiamo la pedivella. Il pistone scende, si aprono i travasi, entra la miscela, il pistone sale, chiude travasi e scarico, comprime, avviene lo scoppio. Il pistone scende, si apre la luce di scarico e i gas iniziano ad uscire, in seguito si aprono anche i travasi, arrivano i gas freschi che spingono via i gas combusti rimasti, il pistone risale, chiude travasi e scarico, comprime, scoppia e potete togliere il piede dalla pedivella. :risata:

 

La durata della fase di scarico ovvero la sua altezza è quella che determina il regime di potenza massima. A fasi basse di scarico tipo 160-170 gradi corrispondono regimi di potenza massima intorno ai 6-7000 giri, con pochi gradi in più diciamo 180 si inizia a salire a botte di 1000 e più giri fino a motori che girano a 13-14.000 e più giri che viaggiano con fasi di scarico intorno ai 195-200 gradi.

 

Come vedete, anche qui fasatura stretta significa ottima resa ai bassi e poco allungo, fasatura larga invece porta ad alti giri, allungo notevole ma motore vuoto sotto certi regimi. Nelle moto 2t il problema è stato risolto con luci di scarico ad altezza variabile quindi ai bassi regimi hanno ad esempio 160 gradi di scarico per aumentare progressivamente l’altezza proporzionalmente all’aumentare dei giri.

 

 

Perché l’altezza influenza il regime di potenza massima? Innanzi tutto perché il tempo in cui la luce resta aperta (in secondi o meglio millisecondi) diminuisce con l’aumentare dei giri quindi salendo con i giri arriveremo ad un regime in cui la carica che entra non aumenta più perché non c’è il tempo di travasarla e di sputare fuori i gas combusti per lasciare posto ai freschi e quindi il motore non ha più la forza di andare oltre quel regime. Se aumentiamo il tempo di apertura ovvero la fasatura di scarico (e necessariamente anche quella di travaso) avremo possibilità di far girare il motore ad un regime maggiore. Inoltre aprendo prima la luce di scarico i gas combusti vanno prima nell’espansione a fare il loro sporco lavoro, (anche quì un’altra bella siringa, poi la vediamo in un topic apposito :mrgreen:) ovvero aiutare il motore ad aspirare più carica ed a comprimerla meglio. Essendo la fase di scarico simmetrica, se si apre prima "x" gradi automaticamente si chiude "x" gradi dopo e come sempre con fasature ampie si hanno le solite perdite di carica e di potenza ai bassi regimi.

 

 

:ciao:

Link al commento
Condividi su altri siti

Quarta parte.

 

In questa parte della guida vedremo fase per fase le modifiche da apportare.

 

Innanzi tutto qualche precisazione. Il mezzo per cui stiamo studiando eventuali modifiche è una vespa, con i suoi pro ed i contro e soprattutto quello che deve venir fuori, salvo casi limite, è un motore che ci consenta comunque un utilizzo normale e senza compromessi del mezzo, compreso portarsi dietro un passeggero e/o bagagli anche per diversi km. Il motore vespa nasce per muovere la vespa e per farla correre quanto basta, questo lascia poco spazio e i limiti dell’applicabilità di tante teorie sono piuttosto stretti. Ad esempio uno dei primi aspetti limitanti è il cambio che ha solo 4 rapporti e con un tuning proiettato agli alti giri nel passaggio dalla terza alla quarta il motore potrebbe ritrovarsi ad un regime dove la potenza non basta neanche a tenere la velocità raggiunta in terza: i famosi motori vespa 3m + rm ovvero in quarta vanno indietro :risata:.

 

Altro aspetto che vorrei fosse ben chiaro è che in materia di tuning ognuno nel suo piccolo ha le sue teorie e i suoi gusti, c’è chi sostiene che sono migliori i motori coppiosi con rapportature lunghe, per altri meglio primarie "leggere" e motori che girano allegri, c’è chi vede il lamellare come l’unica soluzione risolutiva a tanti problemi di erogazione e chi invece è restato legato all’aspirazione a valvola, e così via.

 

Quello che riporto di seguito non è il vangelo ma è semplicemente una mia interpretazione di come orientarsi nelle modifiche alle fasature di un motore vespa con ammissione a valvola rotante. Chiunque voglia esprimere il suo modo di vedere le cose anche in assoluto contrasto con quello che scriverò io è assolutamente ben accetto, il corretto confronto porta sempre vantaggi per tutti.

 

La fasatura di travaso.

 

L’ampiezza della fasatura di travaso è legata principalmente al regime di potenza massima del motore nel senso che più si sale di giri e più ampia deve essere la stessa. Il motivo principale è che la luce viene aperta e chiusa dal pistone e con l’aumentare dei giri il tempo di apertura delle luci di travaso diminuisce a causa del minor tempo che impiega il pistone a tenerle aperte. Modificare l’altezza delle luci di travaso è un lavoro molto delicato in tutti i sensi, difficile da eseguire e ancora di più farlo bene senza compromettere il corretto afflusso della miscela aria-benzina. Un travaso è un condotto che parte dai carter e termina nel cilindro con una sezione decrescente: tale deve rimanere anche dopo aver alzato la luce ovvero se aumentiamo la sezione finale del condotto lo stesso aumento deve essere attuato per tutto il condotto per non perdere quanto guadagnato alzando la fase di travaso. Per la forma che hanno i travasi andare a eseguire una buona lavorazione dell’interno senza comprometterne le giuste forme e sezioni è un lavoro difficile quando eseguibile, provate a pensare di modificare le luci(ne) di un 121 Pinasco per small, vi renderete conto che è meglio cercare un cilindro che ha già dei travasi più grandi.

 

Per comprendere meglio quanto particolare sia un condotto di travaso vi basterà osservarne qualche disegno in sezione (il web è pieno) oppure prendere un vecchio cilindro e tagliarlo dall’alto verso il basso centrando con il taglio i travasi (chi ha foto di cilindri sezionati si faccia avanti). Detto questo, quando si deve fare un motore e si ha intenzione di farlo girare alto è consigliabile partire da un gt che ha già di suo una fasatura di travaso più alta.

 

Un sistema indolore ed economico per alzare la fasatura di travaso è quella di spessorare il cilindro alla base e questo comporta anche l’aumento della fase di scarico; considerando che per la luce di scarico vale quanto detto per il travaso ovvero che all’aumentare dei giri la sua ampiezza deve aumentare, abbiamo teoricamente preso due piccioni con una fava. Altro vantaggio di questa modifica è che è tranquillamente reversibile quindi in caso ci accorgiamo che abbiamo ottenuto il contrario di quello che volevamo, con poche operazioni e soprattutto a costo “0” possiamo ripristinare la situazione precedente. Se invece ad un cilindro abbiamo modificato le luci e la prova su strada ci da un responso negativo il cilindro ha buone possibilità di finire nel secchio del ferro vecchio (provato sulla mia pelle del portafogli :testate::mogli:).

 

Giusto per darvi una idea, per la fase di travaso si va da circa 120 gradi per un motore da 6-6500 giri ai 130 gradi per un motore da 9000 giri e così via. Questi sono valori riportati nella quasi totalità di testi riguardanti motori a 2 tempi e sono secondo me da considerare comunque indicativi ricordandoci sempre che il nostro è un motore di vespa. Da osservare come pochissimi gradi di differenza (che corrispondono a variazioni di decimi di mm) comportano salti di migliaia di giri, quindi niente modifiche a “zappate“ ma pochi gradi per volta, misura e prova.

 

Un discorso a parte va fatto per i travasi fronte scarico. Questi per la loro conformazione sono spesso facilmente lavorabili in altezza ed in larghezza. In genere lavorare in larghezza un travaso e per tutta la sua lunghezza ne aumenta la portata senza aumentarne la durata in gradi in quanto non aumenta l’altezza ovvero miglioria a tutti i regimi. Come per gli altri, aumentandone l’altezza aumenta la durata della loro fase in gradi e spesso si sono visti gt con i travasi fronte scarico più alti dei laterali. Molti costruttori utilizzano la maggiore altezza di queste luci di travaso per migliorare il lavaggio in quanto aprendosi pima dei travasi laterali, possono iniziare a pulire e riempire meglio la parte alta del cilindro.

 

Nei cilindri Pinasco 215, spesso, a causa della lavorazione di cromatura la parte finale dei due travasi fronte scarico è presente un dentino che di fatto crea turbolenza (riducendone di fatto la portata) e devia il getto dei travasi con rischi di cortocircuitazione ovvero flussi diretti direttamente nello scarico. Apportando le giuste correzioni si ha un miglioramento del lavaggo e un migliore riempimento del cilindro, oltre ad un piccolo ma significativo guadagno di qualche grado nella fasatura di travaso.

 

Un sistema piuttosto semplice per aggiungere travasi ove possibile è quello di scavare nella camicia e realizzare delle unghiate, termine assolutamente azzeccato per comprendere la forma di questi travasi. In corrispondenza delle unghiate, sul pistone devono essere realizzati dei fori che serviranno appunto ad alimentare questi nuovi travasi. Non vanno mai realizzati in corrispondenza del/dei punti di unione delle fasce elastiche tenendosi a qualche mm di distanza.

 

Altra importante miglioria attuabile sulle luci di travaso è una corretta pulizia interna ovvero l’asportazione di tutte le bave di fusione dovute agli stampi o spesso ad una non attenta lavorazione di finitura, regolarizzandone le superfici.

 

La fasatura di scarico.

 

Una delle fasi più delicate è quella di scarico. Delicata perchè bastano davvero pochi gradi in più per ritrovarsi grandi benefici e pochi altri ancora per ritrovarsi il motore che non avremmo mai voluto. Anche la larghezza è importante, bastano pochi decimi in più per guadagnare in tutti i regimi e pochi altri ancora per fargli inghiottire le fasce e buttare tutto. Spesso chi non vuole stare tanto a spiegare o non vuole svelare le proprie conoscenze o peggio non saprebbe da dove iniziare vi liquida semplicemente con un "lo scarico non va mai toccato" e invece no, se ben eseguiti i lavori allo scarico danno ottimi risultati. Vediamo come.

 

La fase di scarico è quella che consente al cilindro di buttare via i gas combusti ma non solo. I gas combusti escono dallo scarico e vanno nell'espansione che è praticamente un sistema di sovralimentazione ovvero consente al motore di caricarsi di più di miscela aria-benzina. Questo grazie allo sporco lavoro che i gas di scarico compiono nell'espansione quindi la fase di scarico e l'espansione (principalmente la sua lunghezza) devono necessariamente andare daccordo.

 

Alzando la luce di scarico ovvero aumentandone la durata in gradi si ha un innalzamento del regime di potenza massima ma per girare più alti, maggiore deve essere la fase di travaso, più ampia dev'essere la fase di aspirazione. Alla fine si hanno grandi aumenti di potenza ma la stessa è fruibile solo agli alti regimi, ai medi e sopratutto ai bassi c'è poca potenza. Le fasi non vanno mai viste singolarmente ma sempre in accordo con le altre e con le altre parti del motore ma sopratutto con quello che è l'utilizzo che ne faremo del motore. Se come penso con la nostra vespa, small o large che sia non ci dobbiamo andare in pista allora dobbiamo tornare con i piedi per terra e cercare i giusti compromessi. Iniziamo anche in questo caso a considerare dei valori di riferimento per la luce di scarico in relazione al regime di potenza massima che vorremmo ottenere: si va dai 170 gradi per un motore da 6500-7000 giri ai 180 per 8000 e più giri. Come premesso per la fase di travaso, anche questi valori sono da intendersi indicativi e anche in questo caso notate come pochi gradi originano step di migliaia di giri.

 

Il mio consiglio è quello di non superare i 180 gradi di scarico che ritengo un valore di punta per un motore che deve girare comunque alto e deve essere anche ben abbeverato e possibilmente con una primaria non lunga. Diversamente è meglio tenersi qualche grado lontano dai 180* ricordando che la quarta potrebbe diventare la retromarcia.

 

 

La fasatura di ammissione o aspirazione

 

La modifica della fase di aspirazione è quella che sembra più a portata di mano. Questo grazie alla buona disponibilità di alberi già modificati dai vari costruttori di ricambi ed alle facili modifiche alla valvola rotante che a seconda di quanto e dove viene modificata aggiunge gradi all’anticipo o al ritardo.

 

Iniziamo col dividere la fase di aspirazione in anticipo e ritardo. Come già detto l’anticipo è la parte di aspirazione che inizia prima che il pistone arrivi a pms, il ritardo è voceversa la parte di fasatura che va dal pms alla completa chiusura della valvola. La somma di queste due parti forma è la durata totale della fasatura, espressa solitamente in forma 120/55, 130/65 etc, dove il primo valore indica l’anticipo, il secondo indica il ritardo.

 

Anche in questo caso come travaso e scarico, più il motore deve girare alto più ampia deve essere la fase di aspirazione; vediamo come ripartirla fra anticipo e ritardo.

 

Nei motori originali l’anticipo inizia dopo che i travasi sono chiusi, nei motori molto spinti può iniziare anche prima. La misura (per me) più equilibrata sulla vespa è far aprire l’aspirazione appena i travasi sono chiusi. In questo modo ci garantiamo una buona resa ai bassi-medi e non abbiamo incrocio con lo scarico ovvero la luce di scarico e quella di ammissione non sono mai colegate direttamente. Il ritardo viceversa è la parte della fasatura di aspirazione che va dal pms alla chiusura della valvola rotante ed è quella che più influenza il riempimento del carter agli alti quindi la potenza massima ed il rendimento agli alti regimi. Più il ritardo è accentuato più si deve pagare ai bassi e medi. Vediamo perché.

 

Ad un primo esame del funzionamento di un motore 2t saremmo portati a pensare che quando il pistone ha completato la sua corsa verso il pms la fase di aspirazione si sia esaurita quindi la luce dovrebbe subito chiudersi, ma non è così. Quando il motore è in moto una colonna (una massa) di gas inizia a muoversi verso la valvola perché aspirata dal motore all’apertura dell’ammissione. Questa massa entra nel motore fin quando la valvola è aperta e c’è depressione nel carter, alla chiusura della valvola questa massa che si è messa in movimento viene fermata mentre all’interno del carter con la discesa del pistone la miscela a/b che è entrata viene compressa per poi essere travasata verso l’interno del cilindro all’apertura delle luci di travaso.

 

Ai bassi regimi la forza di questa colonna di gas è bassa e non riesce a vincere la contropressione generata dal pistone che sta scendendo dando luogo al rifiuto ovvero finchè la luce di aspirazione è aperta, fuoriesce parte della carica precedentemente aspirata.

 

Con l’aumentare dei giri questa colonna ha una inerzia sempre maggiore e superiore alla pressione che c’è nel carter. Questo consente alla miscela a/b di continuare ad entrare nel motore anche dopo che il pistone ha iniziato la sua corsa verso il basso e la valvola è ancora aperta fino al completamento del ritardo, comprimendo nel carter pompa. Di fatto si riesce così a caricare il carter con una quantità maggiore di miscela aria-benzina. Più si sale di giri e più si può ritardare la chiusura della valvola anche fino a valori oltre i 70 gradi. Questo valore dipende anche dal tipo di motore ovvero con grosse cilindrate e/o corsa lunga, coppiosi di loro, ci si può avventurare oltre, poiche le perdite di erogazione ai bassi e medi sono compensate da doti di elasticità intrinseche del motore.

 

Una valore complessivo di fasatura di aspirazione che considero equilibrato è dai 180-200 gradi, valore da distribuire poi fra anticipo e ritardo e variabile in base al tipo di motore e utilizzo che se ne vuole fare, comunque senza oltrepassare i 60-70 gradi di ritardo. Ovviamente con meno ritardo andremo a privilegiare i bassi e medi.

 

Per ottenere la fasatura che abbiamo deciso di adottare c’è da fare poi i conti con gli spazi che il nostro motore vespa ci mette a disposizione: nelle small la testa di biella ed il relativo perno si trovano proprio dove noi dovremmo togliere meteriale per aumentare il ritardo, nelle large si trovano all’opposto ovvero dove dovrebbe iniziare l’anticipo. A questi problemi si rimedia in parte asportando materiale dalla valvola allungandola da un lato o dall’altro a seconda di quello che dobbiamo realizzare anche se comunque in corrispondenza del perno di biella l’ammissione anche se aperta presenta una sezione di passaggio abbastanza ridotta.

:ciao:

Link al commento
Condividi su altri siti

  • 4 months later...
  • 10 months later...

Topic stupendo..sarà la mia bibbia. Sentite una cosa..Sto elaborando la mia PK. monto un 102 DR, 19.19, sito plus, pignone 22. albero originale. Ho spessorato il cilindro in modo che a pmi si scopra la lcue di scarico ed ho rilevato queste fasi dopo la rettifica

S 87 contro 86.5

T 64.5 contro 63.5

A 89/48 ovvero apre 48 gradi dopo PMS e si riapre esattamente a 271 ovvero 360-271 gradi prima il PMS, Ovvero solo 89 gradi

Mi preoccupa molto la fase di aspirazione..è normale avere solo 89/48 con albero originale e valvola leggermente lavorata? Per avere almeno 120/55 dovrei tagliare una grandissima porzione di spalla dell'albero. Dove ho sbagliato nella misurazione?

Link al commento
Condividi su altri siti

  • 2 years later...

ciao alex t5......innanzi tutto grazie per la tua guida e i consigli.vorrei fare una domanda che riguarda la valvola rotante. in un passo della tua guida leggo che spesso e volentieri gli alberi motore che noi compriamo per (anticipati) sono invece meno rispetto agli originali.a questo punto la domanda piu ovvia e:lasciare l albero originale???

Link al commento
Condividi su altri siti

  • 10 months later...

Io non ho capito perché, alzando il cilindro con la basetta, si aumenterebbero le fasi di travaso e scarico.

 

Se alziamo il cilindro esse inizieranno prima, ma finiranno anche prima, quindi dove stà il guadagno?

 

Matteo mpfreerider

Link al commento
Condividi su altri siti

MODERATOR
Io non ho capito perché, alzando il cilindro con la basetta, si aumenterebbero le fasi di travaso e scarico.

 

Se alziamo il cilindro esse inizieranno prima, ma finiranno anche prima, quindi dove stà il guadagno?

 

Matteo mpfreerider

No, iniziano prima e finiscono dopo quindi durano anche di più.

 

Vol.

Link al commento
Condividi su altri siti

  • 4 years later...

mmmmm qualcosa non torna.....

tu metti lo 0° al pms....

se si alza lo scarico, si dovra girare meno l'albero per arrivare al punto di apertura della luce dal pms, i gradi cosi misurati diminuiscono, ma avendo alzato dovrebbero aumentare..... se invece mettiamo lo 0° al pmi allora i gradi misurati aumentano, e i conti tornano....

comunque bella e utile guida,

Link al commento
Condividi su altri siti

MODERATOR
16 minuti fa, luigi139 dice:

mmmmm qualcosa non torna.....

tu metti lo 0° al pms....

se si alza lo scarico, si dovra girare meno l'albero per arrivare al punto di apertura della luce dal pms, i gradi cosi misurati diminuiscono, ma avendo alzato dovrebbero aumentare..... se invece mettiamo lo 0° al pmi allora i gradi misurati aumentano, e i conti tornano....

 

Il 14/10/2015 at 06:18, Psycovespa77 dice:

Non è questione di prima o dopo,è questione di quanto restano aperti.

 VOl.

Link al commento
Condividi su altri siti

appunto non è corretto misurarla dal pms, come specificato nella guida, consiglio di partire dal pms facendo girare il volano in senso orario, appena si apre la luce mettere il goniometro a 0° poi continuando a far ruotare sempre in senso orario fermarsi alla chiusura e controllare i gradi di apertura, controllare che ruotando in senso orario i gradi sul goniometro aumentino e non diminuiscano.

questo valido su tutti i travasi e sullo scarico, anche su aspirazione controllata dal pistone, per quella a disco, si deve mettere lo 0° al pmi e controllare a quanti gradi apre prima del pmi e quanti chiude dopo, poi sommarli per avere i gradi di apertura totale, bisogna essere chiari e precisi o si crea confusione

Link al commento
Condividi su altri siti

MODERATOR
1 minuto fa, luigi139 dice:

appunto non è corretto misurarla dal pms, come specificato nella guida, consiglio di partire dal pms facendo girare il volano in senso orario, appena si apre la luce mettere il goniometro a 0° poi continuando a far ruotare sempre in senso orario fermarsi alla chiusura e controllare i gradi di apertura, controllare che ruotando in senso orario i gradi sul goniometro aumentino e non diminuiscano.

questo valido su tutti i travasi e sullo scarico, anche su aspirazione controllata dal pistone, per quella a disco, si deve mettere lo 0° al pmi e controllare a quanti gradi apre prima del pmi e quanti chiude dopo, poi sommarli per avere i gradi di apertura totale, bisogna essere chiari e precisi o si crea confusione

Non cambia niente basta un calcolo matematico banale.

Vol.

Link al commento
Condividi su altri siti

si certo.... ma non c'è scritto da nessuna parte che i gradi misurati con il sistema qui detto vanno sottratti a 360 per avere i gradi di effettiva apertura..... perche cosi si misurano i gradi di chiusura.... o sbaglio?

io mi sono arrangiato e misurato alla mia maniera, ma non tutti hanno competenze per farlo e seguono la guida punto per punto... sbagliando non per colpa loro...

bella la guida  ripeto, ma va fatta GIUSTA!!!

 

Modificato da luigi139
Link al commento
Condividi su altri siti

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Rispondi a questa discussione...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

 Share

Board Life Status


Board startup date: September 04, 2017 19:43:09
×
×
  • Crea Nuovo...